
CHAPTER 6
Uniform Circular Motion and
Gravitation

6.1 Rotation Angle and Angular Velocity

• Define arc length, rotation angle, radius of curvature and angular velocity.
• Calculate the angular velocity of a car wheel spin.

6.2 Centripetal Acceleration

• Establish the expression for centripetal acceleration.
• Explain the centrifuge.

6.3 Centripetal Force

• Calculate coefficient of friction on a car tire.
• Calculate ideal speed and angle of a car on a turn.

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels
also spin rapidly—the latter completing many revolutions, the former only part of one (a circular arc). The same
physical principles are involved in each. (credit: Richard Munckton)

Chapter Outline



INTRODUCTION TO UNIFORM CIRCULAR MOTION AND GRAVITATION

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

• Discuss the inertial frame of reference.
• Discuss the non-inertial frame of reference.
• Describe the effects of the Coriolis force.

6.5 Newton’s Universal Law of Gravitation

• Explain Earth’s gravitational force.
• Describe the gravitational effect of the Moon on Earth.
• Discuss weightlessness in space.
• Examine the Cavendish experiment

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity

• State Kepler’s laws of planetary motion.
• Derive the third Kepler’s law for circular orbits.
• Discuss the Ptolemaic model of the universe.

Many motions, such as the arc of a bird’s flight or
Earth’s path around the Sun, are curved. Recall that Newton’s first law tells us that motion is along a straight line at constant
speed unless there is a net external force. We will therefore study not only motion along curves, but also the forces that cause it,
including gravitational forces. In some ways, this chapter is a continuation of Dynamics: Newton's Laws of Motion as we study
more applications of Newton’s laws of motion.

This chapter deals with the simplest form of curved motion, uniform circular motion, motion in a circular path at constant
speed. Studying this topic illustrates most concepts associated with rotational motion and leads to the study of many new topics
we group under the name rotation. Pure rotational motion occurs when points in an object move in circular paths centered on
one point. Pure translational motion is motion with no rotation. Some motion combines both types, such as a rotating hockey
puck moving along ice.

6.1 Rotation Angle and Angular Velocity
In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and
acceleration. Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-
dimensional kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a
distance away. In this chapter, we consider situations where the object does not land but moves in a curve. We begin the study of
uniform circular motion by defining two angular quantities needed to describe rotational motion.

Rotation Angle
When objects rotate about some axis—for example, when the CD (compact disc) in Figure 6.2 rotates about its center—each
point in the object follows a circular arc. Consider a line from the center of the CD to its edge. Each pit used to record sound
along this line moves through the same angle in the same amount of time. The rotation angle is the amount of rotation and is
analogous to linear distance. We define the rotation angle to be the ratio of the arc length to the radius of curvature:

6.1
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Figure 6.2 All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle in

a time .

Figure 6.3 The radius of a circle is rotated through an angle . The arc length is described on the circumference.

The arc length is the distance traveled along a circular path as shown in Figure 6.3 Note that is the radius of curvature of
the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius . The circumference of a
circle is . Thus for one complete revolution the rotation angle is

This result is the basis for defining the units used to measure rotation angles, to be radians (rad), defined so that

A comparison of some useful angles expressed in both degrees and radians is shown in Table 6.1.

Degree Measures Radian Measure

Table 6.1 Comparison of Angular Units
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Degree Measures Radian Measure

Table 6.1 Comparison of Angular Units

Figure 6.4 Points 1 and 2 rotate through the same angle ( ), but point 2 moves through a greater arc length because it is at a greater

distance from the center of rotation .

If rad, then the CD has made one complete revolution, and every point on the CD is back at its original position.
Because there are in a circle or one revolution, the relationship between radians and degrees is thus

so that

Angular Velocity
How fast is an object rotating? We define angular velocity as the rate of change of an angle. In symbols, this is

where an angular rotation takes place in a time . The greater the rotation angle in a given amount of time, the greater the
angular velocity. The units for angular velocity are radians per second (rad/s).

Angular velocity is analogous to linear velocity . To get the precise relationship between angular and linear velocity, we again
consider a pit on the rotating CD. This pit moves an arc length in a time , and so it has a linear velocity

From we see that . Substituting this into the expression for gives
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We write this relationship in two different ways and gain two different insights:

The first relationship in states that the linear velocity is proportional to the distance from the center of
rotation, thus, it is largest for a point on the rim (largest ), as you might expect. We can also call this linear speed of a point on
the rim the tangential speed. The second relationship in can be illustrated by considering the tire of a
moving car. Note that the speed of a point on the rim of the tire is the same as the speed of the car. See Figure 6.5. So the faster
the car moves, the faster the tire spins—large means a large , because . Similarly, a larger-radius tire rotating at the
same angular velocity ( ) will produce a greater linear speed ( ) for the car.

Figure 6.5 A car moving at a velocity to the right has a tire rotating with an angular velocity .The speed of the tread of the tire relative to

the axle is , the same as if the car were jacked up. Thus the car moves forward at linear velocity , where is the tire radius. A larger

angular velocity for the tire means a greater velocity for the car.

EXAMPLE 6.1

How Fast Does a Car Tire Spin?
Calculate the angular velocity of a 0.300 m radius car tire when the car travels at (about ). See Figure 6.5.

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have The radius of the tire is given
to be Knowing and , we can use the second relationship in to calculate the angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

Substituting the knowns,

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because radians
are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the angular
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velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same speed of 15.0 m/s,
its tires would rotate more slowly. They would have an angular velocity

Both and have directions (hence they are angular and linear velocities, respectively). Angular velocity has only two directions
with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as
illustrated in Figure 6.6.

Figure 6.6 As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always

tangent to the circle. The direction of the angular velocity is clockwise in this case.

6.2 Centripetal Acceleration
We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In
uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even
though the magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in
your car. (If you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you
notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your
speed, the more noticeable this acceleration will become. In this section we examine the direction and magnitude of that
acceleration.

6.12

Take-Home Experiment
Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain
uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the
object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point.
Identify other circular motions and measure their angular velocities.

Ladybug Revolution
Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant 
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and 
acceleration using vectors or graphs.

Click to view content (https://phet.colorado.edu/en/simulation/legacy/rotation)

Figure 6.7
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Figure 6.8 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at
two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of
rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of
an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration( ); centripetal
means “toward the center” or “center seeking.”

Figure 6.8 The directions of the velocity of an object at two different points are shown, and the change in velocity is seen to point

directly toward the center of curvature. (See small inset.) Because , the acceleration is also toward the center; is called

centripetal acceleration. (Because is very small, the arc length is equal to the chord length for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle
formed by the velocity vectors and the one formed by the radii and are similar. Both the triangles ABC and PQR are
isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds . Using the
properties of two similar triangles, we obtain

Acceleration is , and so we first solve this expression for :

Then we divide this by , yielding

Finally, noting that and that , the linear or tangential speed, we see that the magnitude of the
centripetal acceleration is

which is the acceleration of an object in a circle of radius at a speed . So, centripetal acceleration is greater at high speeds and
in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that is proportional to speed
squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner has a
small radius, so that is greater for tighter turns, as you have probably noticed.

It is also useful to express in terms of angular velocity. Substituting into the above expression, we find
. We can express the magnitude of centripetal acceleration using either of two equations:
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Recall that the direction of is toward the center. You may use whichever expression is more convenient, as illustrated in
examples below.

A centrifuge (see Figure 6.9b) is a rotating device used to separate specimens of different densities. High centripetal
acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples.
Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions
such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and
protein, from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to
gravity ; maximum centripetal acceleration of several hundred thousand is possible in a vacuum. Human centrifuges,
extremely large centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of
Earth’s gravity.

EXAMPLE 6.2

How Does the Centripetal Acceleration of a Car Around a Curve Compare with That Due to
Gravity?
What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s (about 90
km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See Figure 6.9(a).

Strategy

Because and are given, the first expression in is the most convenient to use.

Solution

Entering the given values of and into the first expression for gives

Discussion

To compare this with the acceleration due to gravity , we take the ratio of
. Thus, and is noticeable especially if you were not wearing a seat

belt.

6.18
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Figure 6.9 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of

this centripetal acceleration is found in Example 6.2. (b) A particle of mass in a centrifuge is rotating at constant angular velocity . It must

be accelerated perpendicular to its velocity or it would continue in a straight line. The magnitude of the necessary acceleration is found in

Example 6.3.

EXAMPLE 6.3

How Big Is the Centripetal Acceleration in an Ultracentrifuge?
Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at
Determine the ratio of this acceleration to that due to gravity. See Figure 6.9(b).

Strategy

The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity .

Because is given, we can use the second expression in the equation to calculate the centripetal
acceleration.

Solution

To convert to radians per second, we use the facts that one revolution is and one minute is 60.0 s.
Thus,

Now the centripetal acceleration is given by the second expression in as

6.19
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Converting 7.50 cm to meters and substituting known values gives

Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of to
yields

Discussion

This last result means that the centripetal acceleration is 472,000 times as strong as . It is no wonder that such high
centrifuges are called ultracentrifuges. The extremely large accelerations involved greatly decrease the time needed to cause the
sedimentation of blood cells or other materials.

Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a net
external force is needed to cause a centripetal acceleration. In Centripetal Force, we will consider the forces involved in circular
motion.

PHET EXPLORATIONS

Ladybug Motion 2D
Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and
see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the
behavior.

Click to view content (https://phet.colorado.edu/sims/ladybug-motion-2d/ladybug-motion-2d-600.png)

Figure 6.10

Ladybug Motion 2D (https://phet.colorado.edu/en/simulation/legacy/ladybug-motion-2d)

6.3 Centripetal Force
Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope
on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force
on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the
center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force
is mass times acceleration: net . For uniform circular motion, the acceleration is the centripetal acceleration— .
Thus, the magnitude of centripetal force is

By using the expressions for centripetal acceleration from , we get two expressions for the centripetal
force in terms of mass, velocity, angular velocity, and radius of curvature:

You may use whichever expression for centripetal force is more convenient. Centripetal force is always perpendicular to the
path and pointing to the center of curvature, because is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for , you get
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This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

Figure 6.11 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity

and causes uniform circular motion. The larger the , the smaller the radius of curvature and the sharper the curve. The second curve

has the same , but a larger produces a smaller .

EXAMPLE 6.4

What Coefficient of Friction Do Car Tires Need on a Flat Curve?
(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction
being the reason that keeps the car from slipping (see Figure 6.12).

Strategy and Solution for (a)

We know that . Thus,

Strategy for (b)

Figure 6.12 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from
slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know
that the maximum static friction (at which the tires roll but do not slip) is , where is the static coefficient of friction and
N is the normal force. The normal force equals the car’s weight on level ground, so that . Thus the centripetal force in
this situation is

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for from the
equation
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We solve this for , noting that mass cancels, and obtain

Solution for (b)

Substituting the knowns,

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion

We could also solve part (a) using the first expression in because and are given. The coefficient of

friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the curve if
the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less than but no
more than . A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the coefficient of
friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this example, it does not
matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed proportional to the normal
force, which in turn is proportional to mass. If the surface of the road were banked, the normal force would be less as will be
discussed below.

Figure 6.12 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is

due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and

leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.13. The greater the
angle , the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked curves. In
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an “ideally banked curve,” the angle is such that you can negotiate the curve at a certain speed without the aid of friction
between the tires and the road. We will derive an expression for for an ideally banked curve and consider an example related to
it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the
normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively.
In cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case,
the vertical and horizontal directions.

Figure 6.13 shows a free body diagram for a car on a frictionless banked curve. If the angle is ideal for the speed and radius,
then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight

and the normal force of the road . (A frictionless surface can only exert a force perpendicular to the surface—that is, a
normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has
magnitude . Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal
axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components
of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical
component of the normal force is , and the only other vertical force is the car’s weight. These must be equal in
magnitude; thus,

Now we can combine the last two equations to eliminate and get an expression for , as desired. Solving the second equation
for , and substituting this into the first yields

Taking the inverse tangent gives

This expression can be understood by considering how depends on and . A large will be obtained for a large and a small
. That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve

at greater or lower speed than if the curve is frictionless. Note that does not depend on the mass of the vehicle.

Figure 6.13 The car on this banked curve is moving away and turning to the left.
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EXAMPLE 6.5

What Is the Ideal Speed to Take a Steeply Banked Tight Curve?
Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked.
This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To
illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only
rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

we get

Noting that tan 65.0º = 2.14, we obtain

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take
the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which
centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

PHET EXPLORATIONS

Gravity and Orbits
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes
and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Click to view content (https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.html)

Figure 6.14

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical
cyclone have in common? Each exhibits fictitious forces—unreal forces that arise from motion and may seem real, because the
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Take-Home Experiment
Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal
acceleration of the end of the club or racquet. You may choose to do this in slow motion.
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observer’s frame of reference is accelerating or rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into the seat as the airplane accelerates
down the runway. Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you, and there is
no real force backward on you. An even more common experience occurs when you make a tight curve in your car—say, to the
right. You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say that you are
going in a straight line but the car moves to the right, and there is no real force on you to the left. Recall Newton’s first law.

Figure 6.15 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is a fictitious force arising

from the use of the car as a frame of reference. (b) In the Earth’s frame of reference, the driver moves in a straight line, obeying Newton’s

first law, and the car moves to the right. There is no real force to the left on the driver relative to Earth. There is a real force to the right on

the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car.
Passengers instinctively use the car as a frame of reference, while a physicist uses Earth. The physicist chooses Earth because it
is very nearly an inertial frame of reference—one in which all forces are real (that is, in which all forces have an identifiable
physical origin). In such a frame of reference, Newton’s laws of motion take the form given in Dynamics: Newton's Laws of
Motion The car is a non-inertial frame of reference because it is accelerated to the side. The force to the left sensed by car
passengers is a fictitious force having no physical origin. There is nothing real pushing them left—the car, as well as the driver,
is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round. You take the
merry-go-round to be your frame of reference because you rotate together. In that non-inertial frame, you feel a fictitious force,
named centrifugal force (not to be confused with centripetal force), trying to throw you off. You must hang on tightly to
counteract the centrifugal force. In Earth’s frame of reference, there is no force trying to throw you off. Rather you must hang on
to make yourself go in a circle because otherwise you would go in a straight line, right off the merry-go-round.
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Figure 6.16 (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the centrifugal force—it explains

the rider’s motion in the rotating frame of reference. (b) In an inertial frame of reference and according to Newton’s laws, it is his inertia that

carries him off and not a real force (the unshaded rider has and heads in a straight line). A real force, , is needed to cause

a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put
to good use in centrifuges (see Figure 6.17). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter.
Viewed from the rotating frame of reference, the fictitious centrifugal force throws particles outward, hastening their
sedimentation. The greater the angular velocity, the greater the centrifugal force. But what really happens is that the inertia of
the particles carries them along a line tangent to the circle while the test tube is forced in a circular path by a centripetal force.

Figure 6.17 Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because their inertia carries them away

from the center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles will come into

contact with the test tube walls, which will then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that rotates. For example, what if you slide a ball
directly away from the center of the merry-go-round, as shown in Figure 6.18? The ball follows a straight path relative to Earth
(assuming negligible friction) and a path curved to the right on the merry-go-round’s surface. A person standing next to the
merry-go-round sees the ball moving straight and the merry-go-round rotating underneath it. In the merry-go-round’s frame
of reference, we explain the apparent curve to the right by using a fictitious force, called the Coriolis force, that causes the ball to
curve to the right. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow
curved paths and allows us to apply Newton’s Laws in non-inertial frames of reference.
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Figure 6.18 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a

path curved to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’)

shown in the time that the ball follows the curved path in the rotating frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its
rotation. Yet such effects do exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can
be qualitatively understood by analogy with the merry-go-round. Viewed from above the North Pole, Earth rotates
counterclockwise, as does the merry-go-round in Figure 6.18. As on the merry-go-round, any motion in Earth’s northern
hemisphere experiences a Coriolis force to the right. Just the opposite occurs in the southern hemisphere; there, the force is to
the left. Because Earth’s angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as
wind patterns, it has substantial effects.

The Coriolis force causes hurricanes in the northern hemisphere to rotate in the counterclockwise direction, while the tropical
cyclones (what hurricanes are called below the equator) in the southern hemisphere rotate in the clockwise direction. The terms
hurricane, typhoon, and tropical storm are regionally-specific names for tropical cyclones, storm systems characterized by low
pressure centers, strong winds, and heavy rains. Figure 6.19 helps show how these rotations take place. Air flows toward any
region of low pressure, and tropical cyclones contain particularly low pressures. Thus winds flow toward the center of a tropical
cyclone or a low-pressure weather system at the surface. In the northern hemisphere, these inward winds are deflected to the
right, as shown in the figure, producing a counterclockwise circulation at the surface for low-pressure zones of any type. Low
pressure at the surface is associated with rising air, which also produces cooling and cloud formation, making low-pressure
patterns quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the northern
hemisphere but is less visible because high pressure is associated with sinking air, producing clear skies.

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the
rotation of the system underneath. When non-inertial frames are used, fictitious forces, such as the Coriolis force, must be
invented to explain the curved path. There is no identifiable physical source for these fictitious forces. In an inertial frame,
inertia explains the path, and no force is found to be without an identifiable source. Either view allows us to describe nature, but
a view in an inertial frame is the simplest and truest, in the sense that all forces have real origins and explanations.
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Figure 6.19 (a) The counterclockwise rotation of this northern hemisphere hurricane is a major consequence of the Coriolis force. (credit:

NASA) (b) Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The

Coriolis force deflects the winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-pressure zone is

also deflected to the right, producing a clockwise rotation. (e) The opposite direction of rotation is produced by the Coriolis force in the

southern hemisphere, leading to tropical cyclones. (credit: NASA)

6.5 Newton’s Universal Law of Gravitation
What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our
feet are strained by supporting our weight—the force of Earth’s gravity on us. An apple falls from a tree because of the same
force acting a few meters above Earth’s surface. And the Moon orbits Earth because gravity is able to supply the necessary
centripetal force at a distance of hundreds of millions of meters. In fact, the same force causes planets to orbit the Sun, stars to
orbit the center of the galaxy, and galaxies to cluster together. Gravity is another example of underlying simplicity in nature. It is
the weakest of the four basic forces found in nature, and in some ways the least understood. It is a force that acts at a distance,
without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and distances that
vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 6.20. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had
the same cause. Some of Newton’s contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also
made some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to
use that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas.
This theoretical prediction was a major triumph—it had been known for some time that moons, planets, and comets follow such
paths, but no one had been able to propose a mechanism that caused them to follow these paths and not others.
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Figure 6.20 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions

when he saw an apple fall from a tree and realized that if the gravitational force could extend above the ground to a tree, it might also reach

the Sun. The inspiration of Newton’s apple is a part of worldwide folklore and may even be based in fact. Great importance is attached to it

because Newton’s universal law of gravitation and his laws of motion answered very old questions about nature and gave tremendous

support to the notion of underlying simplicity and unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing

inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance
between them. Stated in modern language, Newton’s universal law of gravitation states that every particle in the universe
attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them.

Figure 6.21 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same

on each, consistent with Newton’s third law.
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The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is
concentrated at one specific point called the center of mass (CM), which will be further explored in Linear Momentum and
Collisions. For two bodies having masses and with a distance between their centers of mass, the equation for Newton’s
universal law of gravitation is

where is the magnitude of the gravitational force and is a proportionality factor called the gravitational constant. is a
universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured
experimentally to be

in SI units. Note that the units of are such that a force in newtons is obtained from , when considering masses in

kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational
attraction of . This is an extraordinarily small force. The small magnitude of the gravitational force is
consistent with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In
fact, our body weight is the force of attraction of the entire Earth on us with a mass of .

Recall that the acceleration due to gravity is about on Earth. We can now determine why this is so. The weight of an
object mg is the gravitational force between it and Earth. Substituting mg for in Newton’s universal law of gravitation gives

where is the mass of the object, is the mass of Earth, and is the distance to the center of Earth (the distance between the
centers of mass of the object and Earth). See Figure 6.22. The mass of the object cancels, leaving an equation for :

Substituting known values for Earth’s mass and radius (to three significant figures),

and we obtain a value for the acceleration of a falling body:

Figure 6.22 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth,

Misconception Alert
The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton’s third
law.
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because Earth is so much larger than the object.

This is the expected value and is independent of the body’s mass. Newton’s law of gravitation takes Galileo’s observation that all
masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in
fact, in terms of a universally existing force of attraction between masses.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force
caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its
orbit. Newton found that the two accelerations agreed “pretty nearly.”

EXAMPLE 6.6

Earth’s Gravitational Force Is the Centripetal Force Making the Moon Move in a Curved Path
(a) Find the acceleration due to Earth’s gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth), and
compare it with the value of the acceleration due to Earth’s gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth’s surface, except that is the distance from
the center of Earth to the center of the Moon. The radius of the Moon’s nearly circular orbit is .

Solution for (a)

Substituting known values into the expression for found above, remembering that is the mass of Earth not the Moon, yields

Strategy for (b)

Centripetal acceleration can be calculated using either form of

We choose to use the second form:

where is the angular velocity of the Moon about Earth.

Take-Home Experiment
Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a
piece of paper as well, does it behave like the other objects? Explain your observations.

Making Connections
Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics, modern physics is
exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation,
leading us to think of gravitation as bending space and time.
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Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon’s orbit is 27.3 days, (d) and using

we see that

The centripetal acceleration is

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth’s gravity found in
(a). This agreement is approximate because the Moon’s orbit is slightly elliptical, and Earth is not stationary (rather the Earth-
Moon system rotates about its center of mass, which is located some 1700 km below Earth’s surface). The clear implication is that
Earth’s gravitational force causes the Moon to orbit Earth.

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts
a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.23). We do not sense the
Moon’s effect on Earth’s motion, because the Moon’s gravity moves our bodies right along with Earth but there are other signs on
Earth that clearly show the effect of the Moon’s gravitational force as discussed in Satellites and Kepler's Laws: An Argument for
Simplicity.

Figure 6.23 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits

the Sun in an elliptical orbit, but Earth’s path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed

and are considered direct evidence of planets orbiting those stars. This is important because the planets’ reflected light is often too dim to

be observed.

Tides
Ocean tides are one very observable result of the Moon’s gravity acting on Earth. Figure 6.24 is a simplified drawing of the
Moon’s position relative to the tides. Because water easily flows on Earth’s surface, a high tide is created on the side of Earth
nearest to the Moon, where the Moon’s gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth?
The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So
the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side.
As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it
orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2
minutes), because the Moon moves in its orbit each day as well).
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Figure 6.24 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the

water on the far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two

high and two low tides per day at any location, because Earth rotates under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur
when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a angle to the
Earth-Moon alignment.

Figure 6.25 (a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur

when the Sun lies at to the Earth-Moon alignment. Note that this figure is not drawn to scale.

Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational
force is the strongest and varies most rapidly, such as near black holes (see Figure 6.26). A few likely candidates for black holes
have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across. The
tidal forces near them are so great that they can actually tear matter from a companion star.
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Figure 6.26 A black hole is an object with such strong gravity that not even light can escape it. This black hole was created by the

supernova of one star in a two-star system. The tidal forces created by the black hole are so great that it tears matter from the companion

star. This matter is compressed and heated as it is sucked into the black hole, creating light and X-rays observable from Earth.

”Weightlessness” and Microgravity
In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts
orbiting Earth. What is the effect of “weightlessness” upon an astronaut who is in orbit for months? Or what about the effect of
weightlessness upon plant growth? Weightlessness doesn’t mean that an astronaut is not being acted upon by the gravitational
force. There is no “zero gravity” in an astronaut’s orbit. The term just means that the astronaut is in free-fall, accelerating with
the acceleration due to gravity. If an elevator cable breaks, the passengers inside will be in free fall and will experience
weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.

Figure 6.27 Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by
Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence of
microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International
Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a
corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is
usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity.
When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What
difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a
somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more
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vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity
than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor
of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be achieved
on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in outer space
that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much better
results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward.
Plants might be able to provide a life support system for long duration space missions by regenerating the atmosphere,
purifying water, and producing food. Some studies have indicated that plant growth and development are not affected by
gravity, but there is still uncertainty about structural changes in plants grown in a microgravity environment.

The Cavendish Experiment: Then and Now
As previously noted, the universal gravitational constant is determined experimentally. This definition was first done
accurately by Henry Cavendish (1731–1810), an English scientist, in 1798, more than 100 years after Newton published his
universal law of gravitation. The measurement of is very basic and important because it determines the strength of one of the
four forces in nature. Cavendish’s experiment was very difficult because he measured the tiny gravitational attraction between
two ordinary-sized masses (tens of kilograms at most), using apparatus like that in Figure 6.28. Remarkably, his value for
differs by less than 1% from the best modern value.

One important consequence of knowing was that an accurate value for Earth’s mass could finally be obtained. This was done
by measuring the acceleration due to gravity as accurately as possible and then calculating the mass of Earth from the
relationship Newton’s universal law of gravitation gives

where is the mass of the object, is the mass of Earth, and is the distance to the center of Earth (the distance between the
centers of mass of the object and Earth). See Figure 6.21. The mass of the object cancels, leaving an equation for :

Rearranging to solve for yields

So can be calculated because all quantities on the right, including the radius of Earth , are known from direct
measurements. We shall see in Satellites and Kepler's Laws: An Argument for Simplicity that knowing also allows for the
determination of astronomical masses. Interestingly, of all the fundamental constants in physics, is by far the least well
determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the
gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same
gravitational pull as one kilogram of water. A Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the
20th century. He found, with an accuracy of five parts per billion, that the gravitational force does not depend on the substance.
Such experiments continue today, and have improved upon Eötvös’ measurements. Cavendish-type experiments such as those
of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and
have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing
measurements there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton’s law of
gravitation works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square
law? So far, no deviation has been observed.
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Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( ) and the

two on the stand ( ) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to

check the dependence of the force on distance. Modern experiments of this type continue to explore gravity.

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of
debris. The Moon’s orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors,
and comets about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and
other celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise
descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits
without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

1. A small mass orbits a much larger mass . This allows us to view the motion as if were stationary—in fact, as if from
an inertial frame of reference placed on —without significant error. Mass is the satellite of , if the orbit is
gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth’s satellites (including the Moon), by objects orbiting the Sun, and
by the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler’s
laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our
solar system). These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630), who devised them
after careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by
Tycho Brahe (1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data
constitute the evidence from which new interpretations and meanings can be constructed.

Kepler’s Laws of Planetary Motion
Kepler’s First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
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Figure 6.29 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci ( and ) is a

constant. You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing

a line on paper. A circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from

the center). (b) For any closed gravitational orbit, follows an elliptical path with at one focus. Kepler’s first law states this fact for

planets orbiting the Sun.

Kepler’s Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see Figure
6.30).

Kepler’s Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun. In equation form, this is

where is the period (time for one orbit) and is the average radius. This equation is valid only for comparing two small masses
orbiting the same large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of the
equality.
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Figure 6.30 The shaded regions have equal areas. It takes equal times for to go from A to B, from C to D, and from E to F. The mass

moves fastest when it is closest to . Kepler’s second law was originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler’s laws are stated for planets orbiting the Sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

EXAMPLE 6.7

Find the Time for One Orbit of an Earth Satellite
Given that the Moon orbits Earth each 27.3 d and that it is an average distance of from the center of Earth,
calculate the period of an artificial satellite orbiting at an average altitude of 1500 km above Earth’s surface.

Strategy

The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form in

. Let us use the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find . The given

information tells us that the orbital radius of the Moon is , and that the period of the Moon is
The height of the artificial satellite above Earth’s surface is given, and so we must add the radius of Earth (6380 km) to get

. Now all quantities are known, and so can be found.

Solution

Kepler’s third law is

To solve for , we cross-multiply and take the square root, yielding

Substituting known values yields
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Discussion
This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will orbit in the
same amount of time. This fact is related to the condition that the satellite’s mass is small compared with that of Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler’s, are discovered. It was Newton who
took the next giant step when he proposed the law of universal gravitation. While Kepler was able to discover what was
happening, Newton discovered that gravitational force was the cause.

Derivation of Kepler’s Third Law for Circular Orbits
We shall derive Kepler’s third law, starting with Newton’s laws of motion and his universal law of gravitation. The point is to
demonstrate that the force of gravity is the cause for Kepler’s laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass around a large mass , satisfying the two conditions stated at the beginning
of this section. Gravity supplies the centripetal force to mass . Starting with Newton’s second law applied to circular motion,

The net external force on mass is gravity, and so we substitute the force of gravity for :

The mass cancels, yielding

The fact that cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same
acceleration. Here we see that at a given orbital radius , all masses orbit at the same speed. (This was implied by the result of
the preceding worked example.) Now, to get at Kepler’s third law, we must get the period into the equation. By definition,
period is the time for one complete orbit. Now the average speed is the circumference divided by the period—that is,

Substituting this into the previous equation gives

Solving for yields

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2
yields

This is Kepler’s third law. Note that Kepler’s third law is valid only for comparing satellites of the same parent body, because only
then does the mass of the parent body cancel.

Now consider what we get if we solve for the ratio . We obtain a relationship that can be used to determine
the mass of a parent body from the orbits of its satellites:
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If and are known for a satellite, then the mass of the parent can be calculated. This principle has been used extensively to
find the masses of heavenly bodies that have satellites. Furthermore, the ratio should be a constant for all satellites of the
same parent body (because ). (See Table 6.2).

It is clear from Table 6.2 that the ratio of is constant, at least to the third digit, for all listed satellites of the Sun, and for
those of Jupiter. Small variations in that ratio have two causes—uncertainties in the and data, and perturbations of the
orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new
planets and moons. This is another verification of Newton’s universal law of gravitation.

The Case for Simplicity
The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the
scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the
International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,
2. has sufficient mass to assume hydrostatic equilibrium and
3. has cleared the neighborhood around its orbit.

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

Parent Satellite Average orbital radius r(km) Period T(y) r3 / T2 (km3 / y2)

Earth Moon 0.07481

Sun Mercury 0.2409

Venus 0.6150

Earth 1.000

Mars 1.881

Jupiter 11.86

Saturn 29.46

Neptune 164.8

Pluto 248.3

Table 6.2 Orbital Data and Kepler’s Third Law

6.67

Making Connections
Newton’s universal law of gravitation is modified by Einstein’s general theory of relativity, as we shall see in Particle Physics.
Newton’s gravity is not seriously in error—it was and still is an extremely good approximation for most situations. Einstein’s
modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general relativity
also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical
predictions.
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Parent Satellite Average orbital radius r(km) Period T(y) r3 / T2 (km3 / y2)

Jupiter Io 0.00485 (1.77 d)

Europa 0.00972 (3.55 d)

Ganymede 0.0196 (7.16 d)

Callisto 0.0457 (16.19 d)

Table 6.2 Orbital Data and Kepler’s Third Law

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for
the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the
orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 6.31(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD. This
model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be a
different rule for each heavenly body and a general lack of simplicity.

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws
of physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.

Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving

about it in complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding

more circles, is purely descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at

the center of the solar system. It is fully explained by a small number of laws of physics, including Newton’s universal law of gravitation.
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GLOSSARY
angular velocity , the rate of change of the angle with

which an object moves on a circular path
arc length , the distance traveled by an object along a

circular path
banked curve the curve in a road that is sloping in a

manner that helps a vehicle negotiate the curve
center of mass the point where the entire mass of an object

can be thought to be concentrated
centrifugal force a fictitious force that tends to throw an

object off when the object is rotating in a non-inertial
frame of reference

centripetal acceleration the acceleration of an object
moving in a circle, directed toward the center

centripetal force any net force causing uniform circular
motion

Coriolis force the fictitious force causing the apparent
deflection of moving objects when viewed in a rotating
frame of reference

fictitious force a force having no physical origin
gravitational constant, G a proportionality factor used in

the equation for Newton’s universal law of gravitation; it
is a universal constant—that is, it is thought to be the
same everywhere in the universe

ideal angle the angle at which a car can turn safely on a
steep curve, which is in proportion to the ideal speed

ideal banking the sloping of a curve in a road, where the
angle of the slope allows the vehicle to negotiate the curve
at a certain speed without the aid of friction between the

tires and the road; the net external force on the vehicle
equals the horizontal centripetal force in the absence of
friction

ideal speed the maximum safe speed at which a vehicle can
turn on a curve without the aid of friction between the
tire and the road

microgravity an environment in which the apparent net
acceleration of a body is small compared with that
produced by Earth at its surface

Newton’s universal law of gravitation every particle in the
universe attracts every other particle with a force along a
line joining them; the force is directly proportional to the
product of their masses and inversely proportional to the
square of the distance between them

non-inertial frame of reference an accelerated frame of
reference

pit a tiny indentation on the spiral track moulded into the
top of the polycarbonate layer of CD

radians a unit of angle measurement
radius of curvature radius of a circular path
rotation angle the ratio of the arc length to the radius of

curvature on a circular path:
ultracentrifuge a centrifuge optimized for spinning a rotor

at very high speeds
uniform circular motion the motion of an object in a

circular path at constant speed

SECTION SUMMARY
6.1 Rotation Angle and Angular
Velocity

• Uniform circular motion is motion in a circle at
constant speed. The rotation angle is defined as the
ratio of the arc length to the radius of curvature:

where arc length is distance traveled along a circular
path and is the radius of curvature of the circular
path. The quantity is measured in units of radians
(rad), for which

• The conversion between radians and degrees is
.

• Angular velocity is the rate of change of an angle,

where a rotation takes place in a time . The units
of angular velocity are radians per second (rad/s).
Linear velocity and angular velocity are related by

6.2 Centripetal Acceleration
• Centripetal acceleration is the acceleration

experienced while in uniform circular motion. It always
points toward the center of rotation. It is perpendicular
to the linear velocity and has the magnitude

• The unit of centripetal acceleration is .

6.3 Centripetal Force
• Centripetal force is any force causing uniform

circular motion. It is a “center-seeking” force that
always points toward the center of rotation. It is
perpendicular to linear velocity and has magnitude

which can also be expressed as
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6.4 Fictitious Forces and Non-
inertial Frames: The Coriolis Force

• Rotating and accelerated frames of reference are non-
inertial.

• Fictitious forces, such as the Coriolis force, are needed
to explain motion in such frames.

6.5 Newton’s Universal Law of
Gravitation

• Newton’s universal law of gravitation: Every particle in
the universe attracts every other particle with a force
along a line joining them. The force is directly
proportional to the product of their masses and
inversely proportional to the square of the distance
between them. In equation form, this is

where F is the magnitude of the gravitational force. is
the gravitational constant, given by

.

• Newton’s law of gravitation applies universally.

6.6 Satellites and Kepler’s Laws: An
Argument for Simplicity

• Kepler’s laws are stated for a small mass orbiting a

larger mass in near-isolation. Kepler’s laws of
planetary motion are then as follows:
Kepler’s first law

The orbit of each planet about the Sun is an ellipse with
the Sun at one focus.

Kepler’s second law

Each planet moves so that an imaginary line drawn
from the Sun to the planet sweeps out equal areas in
equal times.

Kepler’s third law

The ratio of the squares of the periods of any two
planets about the Sun is equal to the ratio of the cubes
of their average distances from the Sun:

where is the period (time for one orbit) and is the
average radius of the orbit.

• The period and radius of a satellite’s orbit about a larger
body are related by

or

CONCEPTUAL QUESTIONS
6.1 Rotation Angle and Angular
Velocity
1. There is an analogy between rotational and linear physical

quantities. What rotational quantities are analogous to
distance and velocity?

6.2 Centripetal Acceleration
2. Can centripetal acceleration change the speed of circular

motion? Explain.

6.3 Centripetal Force
3. If you wish to reduce the stress (which is related to

centripetal force) on high-speed tires, would you use
large- or small-diameter tires? Explain.

4. Define centripetal force. Can any type of force (for
example, tension, gravitational force, friction, and so on)
be a centripetal force? Can any combination of forces be a
centripetal force?

5. If centripetal force is directed toward the center, why do
you feel that you are ‘thrown’ away from the center as a
car goes around a curve? Explain.
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6. Race car drivers routinely cut corners as shown in Figure
6.32. Explain how this allows the curve to be taken at the
greatest speed.

Figure 6.32 Two paths around a race track curve are shown.

Race car drivers will take the inside path (called cutting the

corner) whenever possible because it allows them to take the

curve at the highest speed.

7. A number of amusement parks have rides that make vertical
loops like the one shown in Figure 6.33. For safety, the cars
are attached to the rails in such a way that they cannot fall
off. If the car goes over the top at just the right speed, gravity
alone will supply the centripetal force. What other force acts
and what is its direction if:
(a) The car goes over the top at faster than this speed?
(b)The car goes over the top at slower than this speed?

Figure 6.33 Amusement rides with a vertical loop are an

example of a form of curved motion.

8. What is the direction of the force exerted by the car on
the passenger as the car goes over the top of the
amusement ride pictured in Figure 6.33 under the
following circumstances:
(a) The car goes over the top at such a speed that the
gravitational force is the only force acting?
(b) The car goes over the top faster than this speed?
(c) The car goes over the top slower than this speed?

9. As a skater forms a circle, what force is responsible for
making her turn? Use a free body diagram in your
answer.

10. Suppose a child is riding on a merry-go-round at a distance
about halfway between its center and edge. She has a lunch
box resting on wax paper, so that there is very little friction
between it and the merry-go-round. Which path shown in
Figure 6.34 will the lunch box take when she lets go? The
lunch box leaves a trail in the dust on the merry-go-round. Is
that trail straight, curved to the left, or curved to the right?
Explain your answer.

Figure 6.34 A child riding on a merry-go-round releases her

lunch box at point P. This is a view from above the clockwise

rotation. Assuming it slides with negligible friction, will it follow

path A, B, or C, as viewed from Earth’s frame of reference? What

will be the shape of the path it leaves in the dust on the merry-go-

round?

11. Do you feel yourself thrown to either side when you
negotiate a curve that is ideally banked for your car’s
speed? What is the direction of the force exerted on you
by the car seat?
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12. Suppose a mass is moving in a circular path on a
frictionless table as shown in figure. In the Earth’s frame
of reference, there is no centrifugal force pulling the
mass away from the centre of rotation, yet there is a very
real force stretching the string attaching the mass to the
nail. Using concepts related to centripetal force and
Newton’s third law, explain what force stretches the
string, identifying its physical origin.

Figure 6.35 A mass attached to a nail on a frictionless table

moves in a circular path. The force stretching the string is real

and not fictional. What is the physical origin of the force on

the string?

6.4 Fictitious Forces and Non-
inertial Frames: The Coriolis Force
13. When a toilet is flushed or a sink is drained, the water

(and other material) begins to rotate about the drain on
the way down. Assuming no initial rotation and a flow
initially directly straight toward the drain, explain what
causes the rotation and which direction it has in the
northern hemisphere. (Note that this is a small effect
and in most toilets the rotation is caused by directional
water jets.) Would the direction of rotation reverse if
water were forced up the drain?

14. Is there a real force that throws water from clothes
during the spin cycle of a washing machine? Explain
how the water is removed.

15. In one amusement park ride, riders enter a large vertical
barrel and stand against the wall on its horizontal floor.
The barrel is spun up and the floor drops away. Riders
feel as if they are pinned to the wall by a force something
like the gravitational force. This is a fictitious force
sensed and used by the riders to explain events in the
rotating frame of reference of the barrel. Explain in an
inertial frame of reference (Earth is nearly one) what
pins the riders to the wall, and identify all of the real
forces acting on them.

16. Action at a distance, such as is the case for gravity, was
once thought to be illogical and therefore untrue. What
is the ultimate determinant of the truth in physics, and
why was this action ultimately accepted?

17. Two friends are having a conversation. Anna says a
satellite in orbit is in freefall because the satellite keeps
falling toward Earth. Tom says a satellite in orbit is not
in freefall because the acceleration due to gravity is not
9.80 . Who do you agree with and why?

18. A non-rotating frame of reference placed at the center of
the Sun is very nearly an inertial one. Why is it not
exactly an inertial frame?

6.5 Newton’s Universal Law of
Gravitation
19. Action at a distance, such as is the case for gravity, was

once thought to be illogical and therefore untrue. What
is the ultimate determinant of the truth in physics, and
why was this action ultimately accepted?

20. Two friends are having a conversation. Anna says a
satellite in orbit is in freefall because the satellite keeps
falling toward Earth. Tom says a satellite in orbit is not
in freefall because the acceleration due to gravity is not

. Who do you agree with and why?
21. Draw a free body diagram for a satellite in an elliptical

orbit showing why its speed increases as it approaches
its parent body and decreases as it moves away.

22. Newton’s laws of motion and gravity were among the
first to convincingly demonstrate the underlying
simplicity and unity in nature. Many other examples
have since been discovered, and we now expect to find
such underlying order in complex situations. Is there
proof that such order will always be found in new
explorations?

6.6 Satellites and Kepler’s Laws: An
Argument for Simplicity
23. In what frame(s) of reference are Kepler’s laws valid? Are

Kepler’s laws purely descriptive, or do they contain
causal information?
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PROBLEMS & EXERCISES
6.1 Rotation Angle and Angular
Velocity
1. Semi-trailer trucks have an odometer on one hub of a

trailer wheel. The hub is weighted so that it does not
rotate, but it contains gears to count the number of wheel
revolutions—it then calculates the distance traveled. If
the wheel has a 1.15 m diameter and goes through
200,000 rotations, how many kilometers should the
odometer read?

2. Microwave ovens rotate at a rate of about 6 rev/min.
What is this in revolutions per second? What is the
angular velocity in radians per second?

3. An automobile with 0.260 m radius tires travels 80,000
km before wearing them out. How many revolutions do
the tires make, neglecting any backing up and any change
in radius due to wear?

4. (a) What is the period of rotation of Earth in seconds? (b)
What is the angular velocity of Earth? (c) Given that Earth
has a radius of at its equator, what is the
linear velocity at Earth’s surface?

5. A baseball pitcher brings his arm forward during a pitch,
rotating the forearm about the elbow. If the velocity of
the ball in the pitcher’s hand is 35.0 m/s and the ball is
0.300 m from the elbow joint, what is the angular velocity
of the forearm?

6. In lacrosse, a ball is thrown from a net on the end of a
stick by rotating the stick and forearm about the elbow. If
the angular velocity of the ball about the elbow joint is
30.0 rad/s and the ball is 1.30 m from the elbow joint,
what is the velocity of the ball?

7. A truck with 0.420-m-radius tires travels at 32.0 m/s.
What is the angular velocity of the rotating tires in
radians per second? What is this in rev/min?

8. Integrated Concepts When kicking a football, the kicker
rotates his leg about the hip joint.
(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s
and the hip joint is 1.05 m from the tip of the shoe, what
is the shoe tip’s angular velocity?
(b) The shoe is in contact with the initially stationary
0.500 kg football for 20.0 ms. What average force is
exerted on the football to give it a velocity of 20.0 m/s?
(c) Find the maximum range of the football, neglecting
air resistance.

9. Construct Your Own Problem
Consider an amusement park ride in which participants
are rotated about a vertical axis in a cylinder with vertical
walls. Once the angular velocity reaches its full value, the
floor drops away and friction between the walls and the
riders prevents them from sliding down. Construct a
problem in which you calculate the necessary angular
velocity that assures the riders will not slide down the
wall. Include a free body diagram of a single rider.
Among the variables to consider are the radius of the
cylinder and the coefficients of friction between the
riders’ clothing and the wall.

6.2 Centripetal Acceleration
10. A fairground ride spins its occupants inside a flying

saucer-shaped container. If the horizontal circular path
the riders follow has an 8.00 m radius, at how many
revolutions per minute will the riders be subjected to a
centripetal acceleration whose magnitude is 1.50 times
that due to gravity?

11. A runner taking part in the 200 m dash must run around
the end of a track that has a circular arc with a radius of
curvature of 30 m. If he completes the 200 m dash in
23.2 s and runs at constant speed throughout the race,
what is the magnitude of his centripetal acceleration as
he runs the curved portion of the track?

12. Taking the age of Earth to be about years and
assuming its orbital radius of m has not
changed and is circular, calculate the approximate total
distance Earth has traveled since its birth (in a frame of
reference stationary with respect to the Sun).

13. The propeller of a World War II fighter plane is 2.30 m in
diameter.
(a) What is its angular velocity in radians per second if it
spins at 1200 rev/min?
(b) What is the linear speed of its tip at this angular
velocity if the plane is stationary on the tarmac?
(c) What is the centripetal acceleration of the propeller
tip under these conditions? Calculate it in meters per
second squared and convert to multiples of .

14. An ordinary workshop grindstone has a radius of 7.50
cm and rotates at 6500 rev/min.
(a) Calculate the magnitude of the centripetal
acceleration at its edge in meters per second squared
and convert it to multiples of .
(b) What is the linear speed of a point on its edge?
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15. Helicopter blades withstand tremendous stresses. In
addition to supporting the weight of a helicopter, they
are spun at rapid rates and experience large centripetal
accelerations, especially at the tip.
(a) Calculate the magnitude of the centripetal
acceleration at the tip of a 4.00 m long helicopter blade
that rotates at 300 rev/min.
(b) Compare the linear speed of the tip with the speed of
sound (taken to be 340 m/s).

16. Olympic ice skaters are able to spin at about 5 rev/s.
(a) What is their angular velocity in radians per second?
(b) What is the centripetal acceleration of the skater’s
nose if it is 0.120 m from the axis of rotation?
(c) An exceptional skater named Dick Button was able to
spin much faster in the 1950s than anyone since—at
about 9 rev/s. What was the centripetal acceleration of
the tip of his nose, assuming it is at 0.120 m radius?
(d) Comment on the magnitudes of the accelerations
found. It is reputed that Button ruptured small blood
vessels during his spins.

17. What percentage of the acceleration at Earth’s surface is
the acceleration due to gravity at the position of a
satellite located 300 km above Earth?

18. Verify that the linear speed of an ultracentrifuge is about
0.50 km/s, and Earth in its orbit is about 30 km/s by
calculating:
(a) The linear speed of a point on an ultracentrifuge
0.100 m from its center, rotating at 50,000 rev/min.
(b) The linear speed of Earth in its orbit about the Sun
(use data from the text on the radius of Earth’s orbit and
approximate it as being circular).

19. A rotating space station is said to create “artificial
gravity”—a loosely-defined term used for an
acceleration that would be crudely similar to gravity. The
outer wall of the rotating space station would become a
floor for the astronauts, and centripetal acceleration
supplied by the floor would allow astronauts to exercise
and maintain muscle and bone strength more naturally
than in non-rotating space environments. If the space
station is 200 m in diameter, what angular velocity
would produce an “artificial gravity” of at the
rim?

20. At takeoff, a commercial jet has a 60.0 m/s speed. Its
tires have a diameter of 0.850 m.
(a) At how many rev/min are the tires rotating?
(b) What is the centripetal acceleration at the edge of the
tire?
(c) With what force must a determined

bacterium cling to the rim?
(d) Take the ratio of this force to the bacterium’s weight.

21. Integrated Concepts
Riders in an amusement park ride shaped like a Viking
ship hung from a large pivot are rotated back and forth
like a rigid pendulum. Sometime near the middle of the
ride, the ship is momentarily motionless at the top of its
circular arc. The ship then swings down under the
influence of gravity.
(a) Assuming negligible friction, find the speed of the
riders at the bottom of its arc, given the system's center
of mass travels in an arc having a radius of 14.0 m and
the riders are near the center of mass.
(b) What is the centripetal acceleration at the bottom of
the arc?
(c) Draw a free body diagram of the forces acting on a
rider at the bottom of the arc.
(d) Find the force exerted by the ride on a 60.0 kg rider
and compare it to her weight.
(e) Discuss whether the answer seems reasonable.

22. Unreasonable Results
A mother pushes her child on a swing so that his speed
is 9.00 m/s at the lowest point of his path. The swing is
suspended 2.00 m above the child’s center of mass.
(a) What is the magnitude of the centripetal acceleration
of the child at the low point?
(b) What is the magnitude of the force the child exerts
on the seat if his mass is 18.0 kg?
(c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent?

6.3 Centripetal Force
23. (a) A 22.0 kg child is riding a playground merry-go-

round that is rotating at 40.0 rev/min. What centripetal
force must she exert to stay on if she is 1.25 m from its
center?
(b) What centripetal force does she need to stay on an
amusement park merry-go-round that rotates at 3.00
rev/min if she is 8.00 m from its center?
(c) Compare each force with her weight.

24. Calculate the centripetal force on the end of a 100 m
(radius) wind turbine blade that is rotating at 0.5 rev/s.
Assume the mass is 4 kg.

25. What is the ideal banking angle for a gentle turn of 1.20
km radius on a highway with a 105 km/h speed limit
(about 65 mi/h), assuming everyone travels at the limit?

26. What is the ideal speed to take a 100 m radius curve
banked at a 20.0° angle?

27. (a) What is the radius of a bobsled turn banked at 75.0°
and taken at 30.0 m/s, assuming it is ideally banked?
(b) Calculate the centripetal acceleration.
(c) Does this acceleration seem large to you?
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28. Part of riding a bicycle involves leaning at the correct
angle when making a turn, as seen in Figure 6.36. To be
stable, the force exerted by the ground must be on a line
going through the center of gravity. The force on the
bicycle wheel can be resolved into two perpendicular
components—friction parallel to the road (this must
supply the centripetal force), and the vertical normal
force (which must equal the system’s weight).
(a) Show that (as defined in the figure) is related to the
speed and radius of curvature of the turn in the
same way as for an ideally banked roadway—that is,

(b) Calculate for a 12.0 m/s turn of radius 30.0 m (as in
a race).

Figure 6.36 A bicyclist negotiating a turn on level ground

must lean at the correct angle—the ability to do this becomes

instinctive. The force of the ground on the wheel needs to be

on a line through the center of gravity. The net external force

on the system is the centripetal force. The vertical

component of the force on the wheel cancels the weight of

the system while its horizontal component must supply the

centripetal force. This process produces a relationship

among the angle , the speed , and the radius of curvature

of the turn similar to that for the ideal banking of roadways.

29. A large centrifuge, like the one shown in Figure 6.37(a),
is used to expose aspiring astronauts to accelerations
similar to those experienced in rocket launches and
atmospheric reentries.
(a) At what angular velocity is the centripetal
acceleration if the rider is 15.0 m from the center
of rotation?
(b) The rider’s cage hangs on a pivot at the end of the
arm, allowing it to swing outward during rotation as
shown in Figure 6.37(b). At what angle below the
horizontal will the cage hang when the centripetal
acceleration is ? (Hint: The arm supplies
centripetal force and supports the weight of the cage.
Draw a free body diagram of the forces to see what the
angle should be.)

Figure 6.37 (a) NASA centrifuge used to subject trainees to

accelerations similar to those experienced in rocket launches

and reentries. (credit: NASA) (b) Rider in cage showing how

the cage pivots outward during rotation. This allows the total

force exerted on the rider by the cage to be along its axis at

all times.
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30. Integrated Concepts
If a car takes a banked curve at less than the ideal speed,
friction is needed to keep it from sliding toward the
inside of the curve (a real problem on icy mountain
roads). (a) Calculate the ideal speed to take a 100 m
radius curve banked at 15.0º. (b) What is the minimum
coefficient of friction needed for a frightened driver to
take the same curve at 20.0 km/h?

31. Modern roller coasters have vertical loops like the one
shown in Figure 6.38. The radius of curvature is smaller
at the top than on the sides so that the downward
centripetal acceleration at the top will be greater than
the acceleration due to gravity, keeping the passengers
pressed firmly into their seats. What is the speed of the
roller coaster at the top of the loop if the radius of
curvature there is 15.0 m and the downward acceleration
of the car is 1.50 g?

Figure 6.38 Teardrop-shaped loops are used in the latest

roller coasters so that the radius of curvature gradually

decreases to a minimum at the top. This means that the

centripetal acceleration builds from zero to a maximum at the

top and gradually decreases again. A circular loop would

cause a jolting change in acceleration at entry, a disadvantage

discovered long ago in railroad curve design. With a small

radius of curvature at the top, the centripetal acceleration can

more easily be kept greater than so that the passengers do

not lose contact with their seats nor do they need seat belts

to keep them in place.

32. Unreasonable Results
(a) Calculate the minimum coefficient of friction needed
for a car to negotiate an unbanked 50.0 m radius curve
at 30.0 m/s.
(b) What is unreasonable about the result?
(c) Which premises are unreasonable or inconsistent?

6.5 Newton’s Universal Law of
Gravitation
33. (a) Calculate Earth’s mass given the acceleration due to

gravity at the North Pole is and the radius
of the Earth is 6371 km from center to pole.
(b) Compare this with the accepted value of

.
34. (a) Calculate the magnitude of the acceleration due to

gravity on the surface of Earth due to the Moon.
(b) Calculate the magnitude of the acceleration due to
gravity at Earth due to the Sun.
(c) Take the ratio of the Moon’s acceleration to the Sun’s
and comment on why the tides are predominantly due
to the Moon in spite of this number.

35. (a) What is the acceleration due to gravity on the surface
of the Moon?
(b) On the surface of Mars? The mass of Mars is

and its radius is .
36. (a) Calculate the acceleration due to gravity on the

surface of the Sun.
(b) By what factor would your weight increase if you
could stand on the Sun? (Never mind that you cannot.)

37. The Moon and Earth rotate about their common center
of mass, which is located about 4700 km from the center
of Earth. (This is 1690 km below the surface.)
(a) Calculate the magnitude of the acceleration due to
the Moon’s gravity at that point.
(b) Calculate the magnitude of the centripetal
acceleration of the center of Earth as it rotates about
that point once each lunar month (about 27.3 d) and
compare it with the acceleration found in part (a).
Comment on whether or not they are equal and why
they should or should not be.

38. Solve part (b) of Example 6.6 using .
39. Astrology, that unlikely and vague pseudoscience, makes

much of the position of the planets at the moment of
one’s birth. The only known force a planet exerts on
Earth is gravitational.
(a) Calculate the magnitude of the gravitational force
exerted on a 4.20 kg baby by a 100 kg father 0.200 m
away at birth (he is assisting, so he is close to the child).
(b) Calculate the magnitude of the force on the baby due
to Jupiter if it is at its closest distance to Earth, some

away. How does the force of Jupiter on
the baby compare to the force of the father on the baby?
Other objects in the room and the hospital building also
exert similar gravitational forces. (Of course, there could
be an unknown force acting, but scientists first need to
be convinced that there is even an effect, much less that
an unknown force causes it.)
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40. The existence of the dwarf planet Pluto was proposed
based on irregularities in Neptune’s orbit. Pluto was
subsequently discovered near its predicted position. But
it now appears that the discovery was fortuitous,
because Pluto is small and the irregularities in
Neptune’s orbit were not well known. To illustrate that
Pluto has a minor effect on the orbit of Neptune
compared with the closest planet to Neptune:
(a) Calculate the acceleration due to gravity at Neptune
due to Pluto when they are apart, as
they are at present. The mass of Pluto is .
(b) Calculate the acceleration due to gravity at Neptune
due to Uranus, presently about apart,
and compare it with that due to Pluto. The mass of
Uranus is .

41. (a) The Sun orbits the Milky Way galaxy once each
, with a roughly circular orbit averaging

light years in radius. (A light year is the
distance traveled by light in 1 y.) Calculate the centripetal
acceleration of the Sun in its galactic orbit. Does your
result support the contention that a nearly inertial frame
of reference can be located at the Sun?
(b) Calculate the average speed of the Sun in its galactic
orbit. Does the answer surprise you?

42. Unreasonable Result
A mountain 10.0 km from a person exerts a
gravitational force on him equal to 2.00% of his weight.
(a) Calculate the mass of the mountain.
(b) Compare the mountain’s mass with that of Earth.
(c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent?
(Note that accurate gravitational measurements can
easily detect the effect of nearby mountains and
variations in local geology.)

6.6 Satellites and Kepler’s Laws: An
Argument for Simplicity
43. A geosynchronous Earth satellite is one that has an

orbital period of precisely 1 day. Such orbits are useful
for communication and weather observation because
the satellite remains above the same point on Earth
(provided it orbits in the equatorial plane in the same
direction as Earth’s rotation). Calculate the radius of
such an orbit based on the data for the moon in Table
6.2.

44. Calculate the mass of the Sun based on data for Earth’s
orbit and compare the value obtained with the Sun’s
actual mass.

45. Find the mass of Jupiter based on data for the orbit of
one of its moons, and compare your result with its
actual mass.

46. Find the ratio of the mass of Jupiter to that of Earth
based on data in Table 6.2.

47. Astronomical observations of our Milky Way galaxy
indicate that it has a mass of about solar
masses. A star orbiting on the galaxy’s periphery is
about light years from its center. (a) What
should the orbital period of that star be? (b) If its period
is years instead, what is the mass of the
galaxy? Such calculations are used to imply the existence
of “dark matter” in the universe and have indicated, for
example, the existence of very massive black holes at the
centers of some galaxies.

48. Integrated Concepts
Space debris left from old satellites and their launchers
is becoming a hazard to other satellites. (a) Calculate the
speed of a satellite in an orbit 900 km above Earth’s
surface. (b) Suppose a loose rivet is in an orbit of the
same radius that intersects the satellite’s orbit at an
angle of relative to Earth. What is the velocity of the
rivet relative to the satellite just before striking it? (c)
Given the rivet is 3.00 mm in size, how long will its
collision with the satellite last? (d) If its mass is 0.500 g,
what is the average force it exerts on the satellite? (e)
How much energy in joules is generated by the collision?
(The satellite’s velocity does not change appreciably,
because its mass is much greater than the rivet’s.)

49. Unreasonable Results
(a) Based on Kepler’s laws and information on the
orbital characteristics of the Moon, calculate the orbital
radius for an Earth satellite having a period of 1.00 h. (b)
What is unreasonable about this result? (c) What is
unreasonable or inconsistent about the premise of a
1.00 h orbit?

50. Construct Your Own Problem
On February 14, 2000, the NEAR spacecraft was
successfully inserted into orbit around Eros, becoming
the first artificial satellite of an asteroid. Construct a
problem in which you determine the orbital speed for a
satellite near Eros. You will need to find the mass of the
asteroid and consider such things as a safe distance for
the orbit. Although Eros is not spherical, calculate the
acceleration due to gravity on its surface at a point an
average distance from its center of mass. Your
instructor may also wish to have you calculate the
escape velocity from this point on Eros.
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